sPHIENIX Engineering Meeting

DON LYNCH
DECEMBER 4, 2014

AGENDA

- BABAR Magnet Update
- Outer HCal Structural Analysis (Assembly and Support)
- sPHENIX Project Management

Present Magnet Status

- SC Solenoid Magnet is at SLAC
- Ready for shipment but shipping vendor screw up requires a re-bid of shipping contract – RFQ has been issued and bids are due tomorrow
- Expect to ship ~ mid January
- Valve box is also at SLAC and will ship separately
- Other ancillary equipment is crated, will also ship separately
- Still planning for ~May 2015 cold, low current test
- Planning for a full field test at some point
- Magnet review scheduled for 12/16

sPHENIX Global Design Concept

4

Up to 14 tall racks on upper platform

Mid level platform 2 racks? access

Up to 13 (7 short, 6 tall) racks on lower platform

2 500 liter dewars (1 permanent for top off, 1 temp during shutdown for cooldown transfers)

Valve box: cryo supply, magnet power connections, monitoring connections

Flux return end caps, Hinged

Ships stair access to mid and upper platforms

Current sPHENIX model fits through shield wall opening

Outer HCal Assembly and Support Analyses

• Anatoli's slides showing analyses of the Outer HCal Assembly and Support have been reduced in the following slides. The full set of slides are linked on the agenda page.

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES. 1. HALF BARREL, SUPPORTED BY 33.75 degree SUPPORT (3 modules)

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES.

1. HALF BARREL, SUPPORTED BY 33.75 degree SUPPORT (3 modules) DEFORMATION

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES.

1. HALF BARREL, SUPPORTED BY 33.75 degree SUPPORT (3 modules) EQUIVALENT STRESS

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES. 2. HALF BARREL, SUPPORTED BY 101.25 degree SUPPORT (11 modules)

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES.

2. HALF BARREL, SUPPORTED BY 101.25 degree SUPPORT (11 modules) 3D DEFORMATION

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES.

2. HALF BARREL, SUPPORTED BY 101.25 degree SUPPORT (11 modules) EQUIVALENT STRESS

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES. 3. QUARTER BARREL, SUPPORTED BY 1 (one) MODULE BOTTOM

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES. 3. QUARTER BARREL, SUPPORTED BY 1 (one) MODULE BOTTOM DEFORMATION

SPHENIX OUTER CALORIMETER ASSEMBLY STRUCTURAL ANALYSES.

3. QUARTER BARREL, SUPPORTED BY 1 (one) MODULE BOTTOM EQUIVALENT STRESS

4. FULL ASSEMBLY WITH NO TOP MODULE DUE TO VERY LARGE MODULE MODEL HAS BEEN SIMPLIFIED SUPPORTED BY 120 degree support

4. FULL ASSEMBLY WITH NO TOP MODULE DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFYED

SUPPORTED BY 120 degree support. MODULE

4. FULL ASSEMBLY WITH NO TOP MODULE DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFYED

SUPPORTED BY 120 degree support. TOTAL DEFORMATION

4. FULL ASSEMBLY WITH NO TOP MODULE

DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFYED

SUPPORTED BY 120 degree support EQUIVALENT STRESS

5. FULL ASSEMBLY DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFIED SUPPORTED BY 120 degree support

5. FULL ASSEMBLY DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFIED

SUPPORTED BY 120 degree support DEFORMATION

5. FULL ASSEMBLY DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFYED

SUPPORTED BY 120 degree support DEFORMATION

5. FULL ASSEMBLY DUE TO VERY LAGE MODULE MODEL HAS BEEN SIMPLIFYED

SUPPORTED BY 120 degree support EQUIVALENT STRESS

